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proliferate easily, as soon as new attributes are added to the vocabulary. Hence they 
proposed a functional approach to knowledge representation designed to only answer 
“safe” queries that are about analytical relationships between terms, and whose 
answers are independent of the actual structure of the knowledge base, like “a large 
grey igneous rock is a grey rock”. 

It is clear that, in this example, Brachman and colleagues understood the term 
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock 
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as 
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand, 
two of the same authors, in an earlier paper on terminological competence in 
knowledge representation [6] stressed the importance of distinguishing an 
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass 
transistor” (which is “a role a transistor plays in a larger circuit”).  

So why was this distinction ignored? My own conclusion is that important issues 
related to the different ontological assumptions underlying our use of terms have been 
simply given up while striving for logical simplification and computational 
tractability. As a consequence, most representation languages, including “ontology 
languages” like OWL, do not offer constructs able to distinguish among terms having 
similar logical structure but different ontological implications. In our example, clearly 
“large rock” and “sedimentary rock” have the same logical structure, being both 
interpreted as the conjunction of two (primitive) logical properties; yet we tend to 
believe that there is something radically different between the two: why? To answer 
this question we have to investigate: 

• the nature of the primitive properties “being a rock”, “being large”, and “being 
sedimentary”; 

• the way they combine together in a structured term, while modifying each other.  

Unfortunately, while current representation languages offer us powerful tools to build 
structured descriptions whose formal semantics is carefully controlled to provide 
efficient reasoning services, still no agreement has been reached concerning the need 
to adopt proper mechanisms to control the ontological commitments of structured 
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(1) Kind = Type 
(2) Type = Predicate



Fundamental Problems

1. Ontological Extravagance: Allow for types that 
are not ontologically genuine 

2. Ontological Incompleteness :no differentiation 
between types of types, which leads to a 
semantic overload of the corresponding 
construct in language 
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General Terms and Common Nouns

(i) exactly five mice were in the kitchen last night 
(ii) the mouse which has eaten the cheese, has been in 

turn eaten by the cat 



General Terms and Common Nouns

(i) exactly five X ... 
(ii) the Y which is Z... 
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proliferate easily, as soon as new attributes are added to the vocabulary. Hence they 
proposed a functional approach to knowledge representation designed to only answer 
“safe” queries that are about analytical relationships between terms, and whose 
answers are independent of the actual structure of the knowledge base, like “a large 
grey igneous rock is a grey rock”. 

It is clear that, in this example, Brachman and colleagues understood the term 
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock 
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as 
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand, 
two of the same authors, in an earlier paper on terminological competence in 
knowledge representation [6] stressed the importance of distinguishing an 
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass 
transistor” (which is “a role a transistor plays in a larger circuit”).  

So why was this distinction ignored? My own conclusion is that important issues 
related to the different ontological assumptions underlying our use of terms have been 
simply given up while striving for logical simplification and computational 
tractability. As a consequence, most representation languages, including “ontology 
languages” like OWL, do not offer constructs able to distinguish among terms having 
similar logical structure but different ontological implications. In our example, clearly 
“large rock” and “sedimentary rock” have the same logical structure, being both 
interpreted as the conjunction of two (primitive) logical properties; yet we tend to 
believe that there is something radically different between the two: why? To answer 
this question we have to investigate: 

• the nature of the primitive properties “being a rock”, “being large”, and “being 
sedimentary”; 

• the way they combine together in a structured term, while modifying each other.  

Unfortunately, while current representation languages offer us powerful tools to build 
structured descriptions whose formal semantics is carefully controlled to provide 
efficient reasoning services, still no agreement has been reached concerning the need 
to adopt proper mechanisms to control the ontological commitments of structured 
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A Classic Problem

Suppose that I want to represent that the ROLE 
Customer can be played by entities of different 
KINDS, namely, People and Organizations. How to 
relate the ROLE and its allowed types using 
subtyping relations?   
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We run into a logical contradiction!
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1. Primitives reflecting ontological distinctions 

2. Grammar reflecting ontological axiomatization 

3. Patterns reflecting ontological micro-theories
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Role
• All instances of a given ROLE are of the same KIND (e.g., all 

Students are Person) 
• All instances of a ROLE instantiate that type only contingently 

(e.g., no Student is necessarily a Student) 
• Instances of a KIND instantiate that ROLE when participating 

in a certain RELATIONAL CONTEXT  (e.g., instances of 
Person instantiate the Role Student when enrolled in na 
Educational Institution) 

• A ROLE cannot be a supertype of a Rigid Type  
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The Emerging Role Pattern
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Furthermore, as discussed in [1], Phases always occur in a so-called Phase Parti-
tion of a type T. For this reason, mutatis mutandis, constraints identical to (iii.a and 
iii.b) defined for Subkind Partitions are also defined for the case of Phase Partitions. 
However, for the case of Phase Partitions, we have an additional constraint: for every 
instance of type T and for every phase Pi in a Phase Partition specializing T, there is a 
possible world w in which x is not an instance of Pi. This implies that, in w, x is an 
instance of another Phase Pj in the same partition.   

  Finally, as formally proved in [1], rigid types cannot specialize anti-rigid types. 

3. Ontological Design Patterns and Inductive Process Models 

In this section, we present a number of Design Patterns which are derived from the 
ontological constraints underlying OntoUML as presented in the previous section. In 
other words, we limit ourselves here to the patterns which are related to the ontologi-
cal constraints involving the three primitives previously discussed: Phases, Roles and 
Subkind. These patterns are depicted in figure 1 below. 
 

 
Fig.1. Design Patterns emergent from the Ontological Constraints underlying OntoUML: (a) 
the Phase Pattern; (b-c) the Subkind Patterns, and (d) the Role Modeling Design Pattern.  

As a second objective of this section, we elaborate on a number of process models 
(representing inductive rule sets for model construction) which can be directly derived 
from these patterns. The hypothesis considered and illustrated here is the following: in 
each step of the modeling activity (i.e., each execution step of these process models), 
the solution space which characterizes the possible choices of modeling primitives to 
be adopted is reduced. This strategy, in turn, reduces the cognitive load of the modeler 
and, consequently, the complexity of model building using this language. Finally, this 
section demonstrates how these process models can be materialized through an inter-
active dialogue between the modeler and an automated tool running these rule sets. 
This idea is presented here via a running example and, in the following subsections, 
we will exemplify how the modeler may gradually build the ontology model of figure 
5. For that, the design tool executes these process models and engages in dialogues 
with the user, guiding the development of the model from 5(1) to 5(11)  
 
3.1 The Phase Design Pattern 

Phases are always manifested as part of a Phase Partition (PP). In a PP, there is 
always one unique root common supertype which is necessarily a Sortal S. This 
pattern is depicted in figure 1.a above. By analyzing that pattern, we can describe a 
modeling rule set RP which is to be executed every time a Phase P is instantiated in 
the model (an OntoUML class is stereotyped as phase). The rule set RP is represented 

The Emerging Phase Pattern
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Everything else in the model is a representation of a type that these kinds of things 
can instantiate contingently. 

 
Fig 1. Representing the possibility of change for Endurants 

 
This model of figure 1 is represented in a conceptual modeling language termed On-
toUML [9]. This language has been design to reflect the ontological distinctions and 
axiomatization put forth by the Unified Foundational Ontology (UFO) [9,13]. In par-
ticular, this language has as modeling primitives those that represent ontological dis-
tinctions between all the aforementioned sorts of types (e.g., kinds, phase, roles, role 
mixins, relators). Figure 1 represents the possibility of change, i.e., how things could 
possibly be for the entities that are assumed to exist in this domain (i.e., people, or-
ganizations, cars and car rentals). In this approach, the OntoUML model of figure 1 
can be automatically translated to knowledge representation languages such as OWL 
to support automated reasoning [13]. Moreover, as discussed in [13], the OntoUML 
approach offers a support for model validation via visual simulation. In this approach, 
the simulation of this model exposes its ontological commitment and allows us to find 
the possible difference between the intended state of affairs of this domain and the 
valid instances of this model. For instance, by simulating this model, one could find 
out that there is a possible instance in which an organization rents a car to itself (i.e., 
the roles of renter and renting organization are played by the very same entity).  

One way to exclude these unintended modes is to enrich the model with formal con-
straints. The idea is to provide an axiomatization for the model such that set of its 
valid instances and the set of instances representing intended states of affairs of the 
domain coincide [13]. Some of these constraints are temporal constraints dealing, for 
example, with the life cycle of the endurants in the model. In particular, in the On-
toUML approach, one can include temporal constraints (in temporal OCL) prescrib-
ing the permissible phase transitions in the model, for instance, from Child, to Teen-
ager and (only then) to Adult, or governing the more complex transitions involved in 
the phases of a car rental [14]. 

2.2  Events in Business Process Models  

As previously discussed, structural models such as in figure 1 represent what can pos-
sibility change and what has to remain the same in the properties of endurants, i.e., 

 

 

specialization of a sortal S; (ii) roles must be connected to a characterizing relation 
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non-sortal, which is anti-rigid and relationally dependent. In other words, the RoleMix-
in category is similar to and, hence, is subject to many of the same constraints of the 
Role category. However, unlike a role, a RoleMixin classify entities that instantiate 
different kinds (and that obey different principles of identity). Once more, the ontolog-
ical axioms defining a RoleMixin cause it to manifest in OntoUML necessarily follow-
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Finally, in UFO, we have a fundamental distinction between the so-called formal 
and material relations. A formal relation is a relation that holds directly between its 
relata and that is reducible to intrinsic properties of these relata. Take, for instance, the 
relation of being-taller-than between people. If John is taller than Paul then this rela-
tion is established by the mere existence of John and Paul. Moreover, in this case, there 
is no real connection between John and Paul, but the relation is reducible to intrinsic 
properties of these two individuals, namely, John is taller than Paul iff John’s height is 
bigger than Paul’s height. Now, take the case of relations such as being-married-to, 
being-enrolled-at, being-employed-by, being-a-customer-of, etc. These relations are 
not reducible to intrinsic properties of their relata. In contrast, in order for these rela-
tions to hold, something else needs to exist connecting their relata, namely, particular 
instances of marriages, enrollments, employments and purchases. These mediating 
entities can be thought as aggregations of relational properties and are termed relators 
[10]. Relations that are founded on these relators are termed material relations. As 
discussed in [10], the explicit representation of relators solves a number of conceptual 
modeling problems, including the classical problem of the collapse of cardinality con-
straints. Furthermore, as demonstrated in [16], relators also play a decisive role in 
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Multi-Level Theory (MLT)

not on the syntax of a multi-level modeling language and that we use these diagrams to illustrate the 
concepts intuitively. A complete formalization of MLT can be found in [11]. 

 
Fig. 3. Foundations of MLT: basic types and the instance of relation. 

Some structural relations to support conceptual modeling are defined in MLT, starting with the ordi-
nary specialization between types. A type t specializes another type t’ iff in all possible worlds all 
instances of t are also instances of t’. According to this definition every type specializes itself. Since 
this may be undesired in some contexts, we define the proper specialization relation as follows: t 
proper specializes t’ iff t specializes t’ and t is different from t’. Note that the definitions presented 
thus far guarantee that both specializations and proper specializations may only hold between types 
of the same order (these relations are depicted in the upper part of Fig. 4). 

Every type that is not a basic type (e.g., a domain type) is an instance of one of the basic higher-
order types (e.g., “1stOT”, “2ndOT”), and, at the same time proper specializes the basic type at the 
immediately lower level (respectively, “Individual” and “1stOT”). Fig. 4 illustrates this pattern. Since 
“Person” applies to individuals, it is instance of “1stOT” and proper specializes “Individual”. The 
instances of “Person Age Phase” are specializations of “Person” (e.g. “Child” and “Adult”). Thus, 
“Person Age Phase” is instance of “2ndOT” and proper specializes “1stOT”. This pattern will be ap-
plied to UFO concepts in Section 4 and will drive rules for the introduction of second-order types in 
domain models in Section 5. 

 
Fig. 4. Illustrating an important basic pattern of MLT and its intra-level structural relations. 

In addition to the instantiation and specialization relations, MLT also defines a subordination relation. 
Subordination between two higher-order types implies specializations between their instances i.e., t is 
subordinate to t’ iff every instance of t proper specializes an instance of t’. Since subordination im-
plies proper specializations between the instances of the involved types at one order lower, subordina-
tion can only hold between higher-order types of equal order. We will use subordination to explain the 
relation between universals in UFO’s taxonomy of universals (e.g., since every “Subkind” must spe-
cialize a “Kind”, “Subkind” is subordinate to “Kind”.)  

So far, we have only considered intra-level relations, i.e., those that occur between entities of the 
same order. In addition to that, MLT defines cross-level structural relations between types of adjacent 
orders. These relations support an analysis of the notions of power type in the literature, leading to 
their incorporation in the theory.  

Based on the notion of power type proposed by Cardelli [12], which is founded on the notion of 
powerset, MLT defines a power type relation between a higher-order type and a base type at an order 
lower: a type t is power type of a base type t’ iff all instances of t specialize t’ and all possible special-
izations of t’ are instances of t. Thus, a type t is the powertype of t’ when the instances of t are appli-
cable to instances of t’ but t does not define classification criteria. Thus, all specializations of t’, in-
cluding t’ itself are instances of t. For example, consider a type called “Person Powertype” such that 
all possible specializations of “Person” are instances of it and, conversely, all its instances specialize 
“Person”. In this case, “Person Powertype” is the power type of “Person”. Since “Person” is instance 
of “1stOT”, “Person Powertype” is instance of “2ndOT” and specializes “1stOT” (see Fig. 5). (It fol-
lows from the definition of power type that “1stOT” is power type of “Individual”. Analogously, 
“2ndOT” is power type of “1stOT”.).  

Another definition of power type that has had great influence in software engineering was proposed 
by Odell [13]. Inspired on Odell’s definition [13], MLT defines the categorization relation between 
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types of adjacent levels: a type t categorizes a type t’ iff all instances of t are proper specializations of 
t’. The categorization relation occurs between a higher order type t and a base type t’ when all in-
stances of t specialize t’ according to specific classification criteria. Thus, the instances of t specialize 
t’ but t’ is not an instance of t and there may be other types that specializes t’ according to other clas-
sification criteria and, thus, are not instances of t. For instance in Fig. 5, “Person Role” (with instanc-
es “Manager” and “Researcher”) categorizes “Person”, but is not a power type of “Person”, since 
there are specializations of “Person” that are not instances of “Person Role” (“Child” and “Adult” in 
the example). 

We also define some variations of categorization, which are useful to capture further constraints in 
a multi-level model. We consider that a type t completelyCategorizes t’ iff t categorizes t’ and every 
instance of t’ is instance of, at least, an instance of t. Moreover, iff t categorizes t’ and every instance 
of t’ is instance of, at most, one instance of t it is said that t disjointlyCategorizes t’. Finally, a com-
mon use for the notion of power type in literature considers a second-order type that, simultaneously, 
completely and disjointly categorizes a first-order type. To capture this notion we defined the parti-
tions relation. Thus, t partitions t’ iff t categorizes t’ and each instance of t’ is instance of exactly one 
instance of t. For example of the partitioning relation, consider the second-order type called “Person 
Age Phase” with instances “Child” and “Adult” (Fig. 5). (This kind of constraint is usually represent-
ed in UML through a generalization set, see [37] for a detailed comparison). 

 

 
Fig. 5. Illustrating the use of MLT for multi-level conceptual modeling. 

Table 1 summarizes the semantics of each MLT cross-level relation. All these relations are irreflex-
ive, antisymmetric and anti-transitive. 

Table 1. Cross-level structural relations semantics 

Name Meaning 
Power type of 
isPowertypeOf(t, t’) 

The instances of t apply to instances of t’ but no classification criteria are defined. Thus, 
all specializations of t’, including t’ itself are instances of t. 

Categorization 
categorizes(t, t’) 

The instances of t apply to instances of t’ according specific classification criteria. Thus, 
all proper specializations of t’ that follow the specified classification criteria are instanc-
es of t. 

Complete Categorization 
completelyCategorizes(t, t’) 

A variation of categorization in which the classification criteria defined by t guarantee 
that each instance of t’ is instance of at least one instance of t. 

Disjoint Categorization 
disjointlyCategorizes(t, t’) 

A variation of categorization in which the classification criteria defined by t guarantee 
that each instance of t’ is instance of at most one instance of t. 

Partitioning 
partitions(t, t’) 

A variation of categorization in which the classification criteria defined by t guarantee 
that each instance of t’ is instance of exactly one instance of t. 

4 Combining MLT and UFO 

In order to combine MLT and UFO, we establish a hierarchy of conceptual models, with MLT form-
ing the topmost layer. The basic pattern of MLT is applied throughout the hierarchy, first to establish 
the relation between MLT and UFO, and later to establish the relation between a conceptual domain 
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types of adjacent levels: a type t categorizes a type t’ iff all instances of t are proper specializations of 
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Anti-Patterns

In order to obtain some indication of the use of multi-level hierarchies in Wikidata,
we have queried for three simple cases of anti-patterns that violate the MLT stratification
of types into orders [Brasileiro et al. 2016a].

We highlight here two anti-patterns detected. For the first one (AP1 in
[Brasileiro 2016]), we have found 15,177 occurrences, covering many domains, such as
software, sports, biology, food, professions, events. Considering that the total number of
classes involved in multi-level taxonomic hierarchies is 17,819, violations of stratification
according to AP1 appear in 85% of all cases involving multi-level modeling.

The structure of this first anti-pattern is shown in Figure 2. The pattern violates
stratification of orders with a combination of subclassing (any depth) and instantiation.
Occurrences of this pattern in Wikidata are shown in the right-hand side of the figure.
In the first fragment, COMPUTER SCIENTIST is a subclass of PROFESSION. Since TIM
BERNERS-LEE is declared to be an instance of COMPUTER SCIENTIST we are forced to
conclude that Tim is an instance of PROFESSION(!), which clearly violates our sense of
what professions and persons are. Formally, these statements are inconsistent in the light
of MLT: since instance of is anti-transitive and COMPUTER SCIENTIST is instance of

PROFESSION, Tim cannot be declared instance of PROFESSION. The mistake is probably
the subclassing of PROFESSION into CREATOR. If the subclassing statement is removed,
we are able to stratify the model into levels, and recognize that PROFESSION is a second-
order type, while its instances are first-order types. In the second fragment, EARTH-
QUAKE is considered both an instance of, and a specialization of NATURAL DISASTER.
Considering that instances of NATURAL DISASTER are specific events, i.e., specific oc-
currences of natural disasters, then these instances are attributed a point in time. For
example, we can say that the “1985 Mexico City earthquake” took place on “September
19th, 1985”. However, since EARTHQUAKE is also declared to be an instance of NATU-
RAL DISASTER, EARTHQUAKE itself—a type!—can be said to occur at a specific point
in time. In this example, it seems that the undesired relation is the instance of relation
between EARTHQUAKE and NATURAL DISASTER, and perhaps, there is a missing NAT-
URAL DISASTER TYPE second-order class.

A
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...

Z

instance of

Profession

Creator

Scientist
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instance of

Natural Disaster

Earthquake
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Figure 2. The Structure and Occurrences of AP1 in Wikidata

For a second anti-pattern (AP3 in [Brasileiro 2016]), we have found 7,802 occur-
rences, again covering many domains. The structure of this pattern is shown in Figure 3.
In this pattern, instantiation relations prevent the model from being stratified into orders.



Anti-Patterns

In order to obtain some indication of the use of multi-level hierarchies in Wikidata,
we have queried for three simple cases of anti-patterns that violate the MLT stratification
of types into orders [Brasileiro et al. 2016a].

We highlight here two anti-patterns detected. For the first one (AP1 in
[Brasileiro 2016]), we have found 15,177 occurrences, covering many domains, such as
software, sports, biology, food, professions, events. Considering that the total number of
classes involved in multi-level taxonomic hierarchies is 17,819, violations of stratification
according to AP1 appear in 85% of all cases involving multi-level modeling.

The structure of this first anti-pattern is shown in Figure 2. The pattern violates
stratification of orders with a combination of subclassing (any depth) and instantiation.
Occurrences of this pattern in Wikidata are shown in the right-hand side of the figure.
In the first fragment, COMPUTER SCIENTIST is a subclass of PROFESSION. Since TIM
BERNERS-LEE is declared to be an instance of COMPUTER SCIENTIST we are forced to
conclude that Tim is an instance of PROFESSION(!), which clearly violates our sense of
what professions and persons are. Formally, these statements are inconsistent in the light
of MLT: since instance of is anti-transitive and COMPUTER SCIENTIST is instance of

PROFESSION, Tim cannot be declared instance of PROFESSION. The mistake is probably
the subclassing of PROFESSION into CREATOR. If the subclassing statement is removed,
we are able to stratify the model into levels, and recognize that PROFESSION is a second-
order type, while its instances are first-order types. In the second fragment, EARTH-
QUAKE is considered both an instance of, and a specialization of NATURAL DISASTER.
Considering that instances of NATURAL DISASTER are specific events, i.e., specific oc-
currences of natural disasters, then these instances are attributed a point in time. For
example, we can say that the “1985 Mexico City earthquake” took place on “September
19th, 1985”. However, since EARTHQUAKE is also declared to be an instance of NATU-
RAL DISASTER, EARTHQUAKE itself—a type!—can be said to occur at a specific point
in time. In this example, it seems that the undesired relation is the instance of relation
between EARTHQUAKE and NATURAL DISASTER, and perhaps, there is a missing NAT-
URAL DISASTER TYPE second-order class.
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For a second anti-pattern (AP3 in [Brasileiro 2016]), we have found 7,802 occur-
rences, again covering many domains. The structure of this pattern is shown in Figure 3.
In this pattern, instantiation relations prevent the model from being stratified into orders.



Anti-Patterns

A fragment with an occurrence of this pattern is shown in the right-hand side of Figure 3.
CENTRAL PARK3, the public park at the center of Manhattan in New York City, is consid-
ered an instance of both URBAN PARK and PARK, while URBAN PARK is also an instance
of PARK. As a subclass of GEOGRAPHIC LOCATION (not shown in the figure), PARK de-
fines the property coordinate location. This is not a problem for CENTRAL PARK since
it has a specific location. However, this is problematic for the URBAN PARK class, as
it does not have a specific location. In this example, it seems that the incorrect relation
is the instance of relation between URBAN PARK and PARK, which should possibly be
replaced by a subclass of relation.

A

B

C

instance of

instance of

instance of
Park

Urban Park

Central Park

instance of

instance of

instance of

Figure 3. The Structure and Occurrence of AP3 in Wikidata

5. Revising UML Powertype Support with MLT

A reference ontology can be used to inform the revision and redesign of a mod-
eling language, not only through the identification of semantic overload, construct
deficit, construct excess and construct redundancy [Guizzardi 2015], but also through
the definition of modeling patterns and semantically-motivated syntactic constraints

[Carvalho et al. 2014]. Using MLT as a reference ontology, we have proposed a well-
founded revision for the powertype support in UML 2.x, which resulted in a lightweight
UML profile reflecting the MLT rules [Carvalho et al. 2016]4. Our aim is to equip the
modeler with means to avoid common modeling issues such as those shown in section 4.

Basically, the powertype pattern in UML follows Odell’s work. However, differ-
ently from what was discussed in section 2, the UML 2.x support for powertypes relies
on a construct called “generalization set”. A generalization set is a means to identify sets
of specializations (or generalizations as they are called in UML). Each generalization is
a binary relation between two classes, and these binary relations are bundled in a “gener-
alization set”. The generalization set is then annotated with constraints and, optionally, a
powertype (in Odell’s sense) of the type being specialized. Figure 4 revisits the example
of Figure 1, now using UML 2.x powertype support. Although a regular association is
still used to relate the base type to the powertype, the powertype becomes a powertype
in the model through its role in a generalization set (hence, differently from the two-level
workaround discussed in section 2, there is some explicit support for powertypes).

3In Figure 3, we abuse the diagrammatic notation and do not distinguish between classes and individuals.
4We emphasize the version number here, since the support for the powertype pattern in the now obsolete

version 1.x was quite different.
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the case warmbloodedSpecies is true for an animal species (such as Lion) all its instances (such
as Cecil) must have isWarmblooded equals true.

2.3. Axiomatization in First-Order Logics

MLT* is formalized as an axiomatic theory in first-order logics, quantifying over all possible
types and individuals, which together constitute the entities we are interested in (a1). Every entity
(type or individual alike) can be related to one or more types through a primitive instance of
relation (or iof, for short). Since types can themselves be related to other types through iof, this
enables chains of instantiation of arbitrary lengths. Unlike types, individuals can never play the
role of type in instantiation (a2). We assume that the theory is only concerned with types with
non-trivially false intensions, i.e., with types that have possible instances (a3).

a1 8x(entity(x))
a2 8x(individual(x)$ ¬9y(iof(y,x)))
a3 8x(type(x)$9y(iof(y,x)))

We establish that types are ultimately grounded on individuals. Thus a super-relation (iof’)
is defined including all pairs such that iof(x,y), and also all pairs derived from a chain of pairs
connected by iof relations. The transitive (iof’) relation then always leads us from a type to one
or more individuals:

a4 8t(type(t)!9x(individual(x)^ iof’(x, t)))

First-order types are those whose instances are individuals (a5). Second-order types are those
instances are first-order types (a6), and so on. Any number of ordered types can be defined in
this way [2].

a5 8x(firstordertype(x)$ type(x)^8y(iof(y,x)! individual(y)))
a6 8x(secondordertype(x)$ type(x)^8y(iof(y,x)! firstordertype(y)))

Specialization between types is defined as usual, i.e., a type specializes a supertype whenever
all its instances are also instances of the supertype (a7). Proper specialization is defined for the
cases in which the extension of the specialized type is a proper subset of the extension of the
general type (a8).

a7 8t1, t2(specializes(t1, t2)$ type(t1)^8x(iof(x, t1)! iof(x, t2)))
a8 8t1, t2(properSpecializes(t1, t2)$ specializes(t1, t2)^¬specializes(t2, t1)))

Finally, two types are considered equal iff all their possible instances are the same (i.e., if
they are necessarily co-extensional):

a9 8t1, t2(type(t1)^ type(t2)! (t1 = t2 $8x(iof(x, t1)$ iof(x, t2))))

Powertypes and variants. Relations between types were defined accounting for different notions
of powertype used in the literature, more specifically clarifying and positioning conflicting defi-
nitions of Cardelli [17] and Odell [18]. A type t1 isPowertypeOf a (base) type t2 iff all instances
of t1 are specializations of t2 and all possible specializations of t2 are instances of t1 (a10). Pow-
ertypes in this sense are analogous to powersets. The powerset of a set A is a set that includes as
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establish some basic terminology for the purpose of this paper.
We will adopt here the term “property” in alignment with
the UML, which introduces it in the context of a classifier
as follows (extracted from [15]): “A Property related by
ownedAttribute to a Classifier [...] represents an attribute and
might also represent an association end. It relates an instance
of the Classifier to a value or set of values of the type of
the attribute.” By doing so, we can address at the same time
UML’s attributes and association ends. The same account is
also suitable for OWL object properties (which can roughly be
understood as navigable association ends) and data properties
(which can roughly be understood as attributes typed with
datatypes).

Further, we consider each type to be characterized by an
intension (or principle of application [11]), which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, a Dog, a Chair). If the intension of a
type t applies to an entity e then it is said that e is an instance
of t. The set of instances of a type is called the extension of
the type [12]. We admit that types may have a time-varying
extension, when entities that fall under the type’s intension are
created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-

order types. The types whose instances are first-order types are
called second-order types, and so on. Second-order types (also
termed metaclasses), third-order types (also termed metameta-
classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of
biological species to illustrate the various types of properties.
The modeling of species (and animal breeds alike) is evoked
as a typical example of multi-level modeling in the literature
(see, e.g., “tree species” in [15] and “dog breed” in [3]). We
also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation
inspired in UML. Bird is specialized in two subtypes, namely,
Blue Macaw and Golden Eagle. According to this model,
particular birds have a particular birth date, a particular
height, and a name. This model uses the powertype pat-
tern: the two subtyping relations between the latter types
and Bird are part of a generalization set related to the
powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the
instances of Bird are classified by instances of Bird Species.
Furthermore, the powertype Bird Species is connected to the
type Bird by being referred to in the generalization set spe-
cializing Bird and containing the subtypes Blue Macaw and
Golden Eagle. Hence, Blue Macaw and Golden Eagle are
instances of Bird Species. (Bird Species is a second-order
type, whose instances are first-order types.) Two instances of
Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their
types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-
ues for all the general properties that characterize the type
Bird Species. For instance, the type Golden Eagle may
have a number of living individuals = 250,000, and an
average height = 85 centimeters. Notice that these are not
properties of particular birds (e.g., Joe does not have an aver-
age height, or a number of living individuals), but properties
of each species of birds as a whole. Indeed, properties such as
number of living individuals or average height are properties
of instances of Bird Species that result from properties of
the instances of Bird (e.g., the average height of a particular
species such as Golden Eagle is derived from individual
heights of particular instances of Golden Eagle). We term
these properties resultant properties of the species. They are
derived (or derivable) from the extension of the type (the
population of birds and their properties). A fully specified
resultant property includes the definition of the means for
derivation, e.g., in terms of the counting of instances or any
other form of aggregation of values of properties of a lower-
level type.

In contrast, a property such as feeding habit for
Bird Species capture regularities over the instances of
a particular type. When declaring that feeding habit is
"carnivorous" for Golden Eagle, we are capturing that
all instances of that type are carnivores. To be precise,
the type Golden Eagle is not itself a carnivore; it has the
property of having instances that exhibit that property. In
other words, it has the property of bestowing to all its
instances a particular feeding habit1. We term here these
properties regularity properties. The aforementioned property
screen size of Mobile Phone Model is another example of
regularity property. Regularity properties can be understood
as parameters in the intension of the instances of the types
that have it. Since regularity properties affect the intension of
instances of a type, they can only be defined for high-order
types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in
which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].



establish some basic terminology for the purpose of this paper.
We will adopt here the term “property” in alignment with
the UML, which introduces it in the context of a classifier
as follows (extracted from [15]): “A Property related by
ownedAttribute to a Classifier [...] represents an attribute and
might also represent an association end. It relates an instance
of the Classifier to a value or set of values of the type of
the attribute.” By doing so, we can address at the same time
UML’s attributes and association ends. The same account is
also suitable for OWL object properties (which can roughly be
understood as navigable association ends) and data properties
(which can roughly be understood as attributes typed with
datatypes).

Further, we consider each type to be characterized by an
intension (or principle of application [11]), which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, a Dog, a Chair). If the intension of a
type t applies to an entity e then it is said that e is an instance
of t. The set of instances of a type is called the extension of
the type [12]. We admit that types may have a time-varying
extension, when entities that fall under the type’s intension are
created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-

order types. The types whose instances are first-order types are
called second-order types, and so on. Second-order types (also
termed metaclasses), third-order types (also termed metameta-
classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of
biological species to illustrate the various types of properties.
The modeling of species (and animal breeds alike) is evoked
as a typical example of multi-level modeling in the literature
(see, e.g., “tree species” in [15] and “dog breed” in [3]). We
also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation
inspired in UML. Bird is specialized in two subtypes, namely,
Blue Macaw and Golden Eagle. According to this model,
particular birds have a particular birth date, a particular
height, and a name. This model uses the powertype pat-
tern: the two subtyping relations between the latter types
and Bird are part of a generalization set related to the
powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the
instances of Bird are classified by instances of Bird Species.
Furthermore, the powertype Bird Species is connected to the
type Bird by being referred to in the generalization set spe-
cializing Bird and containing the subtypes Blue Macaw and
Golden Eagle. Hence, Blue Macaw and Golden Eagle are
instances of Bird Species. (Bird Species is a second-order
type, whose instances are first-order types.) Two instances of
Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their
types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-
ues for all the general properties that characterize the type
Bird Species. For instance, the type Golden Eagle may
have a number of living individuals = 250,000, and an
average height = 85 centimeters. Notice that these are not
properties of particular birds (e.g., Joe does not have an aver-
age height, or a number of living individuals), but properties
of each species of birds as a whole. Indeed, properties such as
number of living individuals or average height are properties
of instances of Bird Species that result from properties of
the instances of Bird (e.g., the average height of a particular
species such as Golden Eagle is derived from individual
heights of particular instances of Golden Eagle). We term
these properties resultant properties of the species. They are
derived (or derivable) from the extension of the type (the
population of birds and their properties). A fully specified
resultant property includes the definition of the means for
derivation, e.g., in terms of the counting of instances or any
other form of aggregation of values of properties of a lower-
level type.

In contrast, a property such as feeding habit for
Bird Species capture regularities over the instances of
a particular type. When declaring that feeding habit is
"carnivorous" for Golden Eagle, we are capturing that
all instances of that type are carnivores. To be precise,
the type Golden Eagle is not itself a carnivore; it has the
property of having instances that exhibit that property. In
other words, it has the property of bestowing to all its
instances a particular feeding habit1. We term here these
properties regularity properties. The aforementioned property
screen size of Mobile Phone Model is another example of
regularity property. Regularity properties can be understood
as parameters in the intension of the instances of the types
that have it. Since regularity properties affect the intension of
instances of a type, they can only be defined for high-order
types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in
which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].

Regularity Property



establish some basic terminology for the purpose of this paper.
We will adopt here the term “property” in alignment with
the UML, which introduces it in the context of a classifier
as follows (extracted from [15]): “A Property related by
ownedAttribute to a Classifier [...] represents an attribute and
might also represent an association end. It relates an instance
of the Classifier to a value or set of values of the type of
the attribute.” By doing so, we can address at the same time
UML’s attributes and association ends. The same account is
also suitable for OWL object properties (which can roughly be
understood as navigable association ends) and data properties
(which can roughly be understood as attributes typed with
datatypes).

Further, we consider each type to be characterized by an
intension (or principle of application [11]), which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, a Dog, a Chair). If the intension of a
type t applies to an entity e then it is said that e is an instance
of t. The set of instances of a type is called the extension of
the type [12]. We admit that types may have a time-varying
extension, when entities that fall under the type’s intension are
created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-

order types. The types whose instances are first-order types are
called second-order types, and so on. Second-order types (also
termed metaclasses), third-order types (also termed metameta-
classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of
biological species to illustrate the various types of properties.
The modeling of species (and animal breeds alike) is evoked
as a typical example of multi-level modeling in the literature
(see, e.g., “tree species” in [15] and “dog breed” in [3]). We
also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation
inspired in UML. Bird is specialized in two subtypes, namely,
Blue Macaw and Golden Eagle. According to this model,
particular birds have a particular birth date, a particular
height, and a name. This model uses the powertype pat-
tern: the two subtyping relations between the latter types
and Bird are part of a generalization set related to the
powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the
instances of Bird are classified by instances of Bird Species.
Furthermore, the powertype Bird Species is connected to the
type Bird by being referred to in the generalization set spe-
cializing Bird and containing the subtypes Blue Macaw and
Golden Eagle. Hence, Blue Macaw and Golden Eagle are
instances of Bird Species. (Bird Species is a second-order
type, whose instances are first-order types.) Two instances of
Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their
types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-
ues for all the general properties that characterize the type
Bird Species. For instance, the type Golden Eagle may
have a number of living individuals = 250,000, and an
average height = 85 centimeters. Notice that these are not
properties of particular birds (e.g., Joe does not have an aver-
age height, or a number of living individuals), but properties
of each species of birds as a whole. Indeed, properties such as
number of living individuals or average height are properties
of instances of Bird Species that result from properties of
the instances of Bird (e.g., the average height of a particular
species such as Golden Eagle is derived from individual
heights of particular instances of Golden Eagle). We term
these properties resultant properties of the species. They are
derived (or derivable) from the extension of the type (the
population of birds and their properties). A fully specified
resultant property includes the definition of the means for
derivation, e.g., in terms of the counting of instances or any
other form of aggregation of values of properties of a lower-
level type.

In contrast, a property such as feeding habit for
Bird Species capture regularities over the instances of
a particular type. When declaring that feeding habit is
"carnivorous" for Golden Eagle, we are capturing that
all instances of that type are carnivores. To be precise,
the type Golden Eagle is not itself a carnivore; it has the
property of having instances that exhibit that property. In
other words, it has the property of bestowing to all its
instances a particular feeding habit1. We term here these
properties regularity properties. The aforementioned property
screen size of Mobile Phone Model is another example of
regularity property. Regularity properties can be understood
as parameters in the intension of the instances of the types
that have it. Since regularity properties affect the intension of
instances of a type, they can only be defined for high-order
types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in
which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].
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establish some basic terminology for the purpose of this paper.
We will adopt here the term “property” in alignment with
the UML, which introduces it in the context of a classifier
as follows (extracted from [15]): “A Property related by
ownedAttribute to a Classifier [...] represents an attribute and
might also represent an association end. It relates an instance
of the Classifier to a value or set of values of the type of
the attribute.” By doing so, we can address at the same time
UML’s attributes and association ends. The same account is
also suitable for OWL object properties (which can roughly be
understood as navigable association ends) and data properties
(which can roughly be understood as attributes typed with
datatypes).

Further, we consider each type to be characterized by an
intension (or principle of application [11]), which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, a Dog, a Chair). If the intension of a
type t applies to an entity e then it is said that e is an instance
of t. The set of instances of a type is called the extension of
the type [12]. We admit that types may have a time-varying
extension, when entities that fall under the type’s intension are
created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-

order types. The types whose instances are first-order types are
called second-order types, and so on. Second-order types (also
termed metaclasses), third-order types (also termed metameta-
classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of
biological species to illustrate the various types of properties.
The modeling of species (and animal breeds alike) is evoked
as a typical example of multi-level modeling in the literature
(see, e.g., “tree species” in [15] and “dog breed” in [3]). We
also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation
inspired in UML. Bird is specialized in two subtypes, namely,
Blue Macaw and Golden Eagle. According to this model,
particular birds have a particular birth date, a particular
height, and a name. This model uses the powertype pat-
tern: the two subtyping relations between the latter types
and Bird are part of a generalization set related to the
powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the
instances of Bird are classified by instances of Bird Species.
Furthermore, the powertype Bird Species is connected to the
type Bird by being referred to in the generalization set spe-
cializing Bird and containing the subtypes Blue Macaw and
Golden Eagle. Hence, Blue Macaw and Golden Eagle are
instances of Bird Species. (Bird Species is a second-order
type, whose instances are first-order types.) Two instances of
Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their
types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-
ues for all the general properties that characterize the type
Bird Species. For instance, the type Golden Eagle may
have a number of living individuals = 250,000, and an
average height = 85 centimeters. Notice that these are not
properties of particular birds (e.g., Joe does not have an aver-
age height, or a number of living individuals), but properties
of each species of birds as a whole. Indeed, properties such as
number of living individuals or average height are properties
of instances of Bird Species that result from properties of
the instances of Bird (e.g., the average height of a particular
species such as Golden Eagle is derived from individual
heights of particular instances of Golden Eagle). We term
these properties resultant properties of the species. They are
derived (or derivable) from the extension of the type (the
population of birds and their properties). A fully specified
resultant property includes the definition of the means for
derivation, e.g., in terms of the counting of instances or any
other form of aggregation of values of properties of a lower-
level type.

In contrast, a property such as feeding habit for
Bird Species capture regularities over the instances of
a particular type. When declaring that feeding habit is
"carnivorous" for Golden Eagle, we are capturing that
all instances of that type are carnivores. To be precise,
the type Golden Eagle is not itself a carnivore; it has the
property of having instances that exhibit that property. In
other words, it has the property of bestowing to all its
instances a particular feeding habit1. We term here these
properties regularity properties. The aforementioned property
screen size of Mobile Phone Model is another example of
regularity property. Regularity properties can be understood
as parameters in the intension of the instances of the types
that have it. Since regularity properties affect the intension of
instances of a type, they can only be defined for high-order
types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in
which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].
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What’s in a type?
1. An abstract entity 

2. A mereological sum of instances 

3. A variable embodiment, i.e., full fledged endurant E 
such that: 

• in each world, E it is constituted by a sum S 

• the principle of identity of E is the intension of the 
associated type, which is also the principle of 
individuation for the constituents of E
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that are on route, whether a ship type is under production or discontinued, etc.
Further, we can anticipate in this domain that the model is not exhaustive with
respect to ship types; thus, the focus shifts to invariant aspects of ship types,
that we may have in the future (not unlike particular ships and persons, these
do not have to be ‘hard-coded’ in the model). Thus, we need to introduce the
notion of Ship Type in our model, itself a high-order type (or metatype) as its
instances are types. However, the UFO taxonomy shown in Fig. 1 and reflected
in OntoUML does not confer to types the same possibilities that are conferred to
endurant individuals. In the following sections, we refactor the UFO taxonomy
shown earlier in order to ascribe full endurant status to types, later revisiting
OntoUML’s stereotypes and rules to support high-order types. We also incor-
porate the MLT theory [1,10] as a microtheory of UFO in order to account for
multi-level phenomena (such as the notion of type order).

3 Extending UFO with High-Order Domain Endurant
Types

In order to accommodate high-order types in UFO’s domain of inquiry, we rely
on a notion of instantiation (iof for short) that breaks away with the two-level
divide and admits that types may classify not only individuals, but other types
as well. Hence, we incorporate into UFO the notion of instantiation provided by
MLT, where iof is a primitive relation that holds between an instance e and a
type t in a world w where t classifies e (a1). UFO entities can thus be divided
into those that can possibly have instances (in a modal sense) (a2) and those
that cannot (a3), i.e., between types and individuals (see Fig. 4).

Fig. 2. Example OntoUML model in the domain of maritime ships.

a1 iof(e, t, w) → entity(e) ∧ type(t) ∧ world(w)
a2 type(t) ↔ entity(t) ∧ ∃e, w (iof(e, t, w))
a3 individual(i) ↔ entity(t) ∧ ¬type(i)

This basic distinction of entities allows for the characterization of three fun-
damental classification schemes: (i) the two-level scheme, which include individ-
uals and types of individuals, also referred to as first-order types; (ii) the strictly
stratified scheme, which extends the two-level scheme by including second-order
types (i.e., types of first-order types), third-order types (i.e., types of second-
order types), and so on; and (iii) the non-stratified schemes, where types’ exten-
sions span across the boundaries of any particular order. For example, consider
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Current, a subkind of Ship Type, namely, Ship Class by Size classifies ship types
using maximum size for those classes. The generalization set annotation indicates
that Suez-Class Ship and Panama-Class Ship are instances of Ship Class by Size,
and thus can be related to a Canal (e.g., the Panama Canal, the Suez Canal)
through the establishment of Canal Restrictions that determine the admissible
ship classes for that canal. (The orders of subclasses are inherited from their
superclasses and can be omitted here since order is defined for Ship Type.)

The attribute fleet of Ship Type corresponds to the number of ships that
instantiate the type, and is an example of ‘resultant property’ [20]. The attributes
of Ship Class by Size are examples of the so-called regularity attributes [9,20], and
should be accompanied by OCL constraints relating a ship type’s max length,
max weight and max draft to a ship’s length, weight and draft. These attributes
are given values as static features of the instances of Ship Class by Size.

Fig. 6. Example including high-order types in the maritime domain.

4.3 Semantically-motivated Constraints for High-Order Types

Here, we discuss a number of consequences of the theory introduced in Sect. 3
for the various combinations of modeling constructs involving high-order types.
These rules can be detected automatically in OntoUML models and rule out
unsound models. Some of these rules are direct consequences of the MLT
microtheory, some are a direct consequence of considering types as endurants,
and some arise from the combination of MLT with UFO constraints applicable
to endurant types.

For example, as a direct consequence of MLT alone, a higher-order categorizer
always specializes a Cardelli powertype of the same base type [9]. Thus, any
type of ship (i.e., any higher-order type related to the base type Ship through
«instantiation») will be a specialization of Ship Type, and Ship Type, as a Cardelli
powertype, is the most abstract type related to Ship through «instantiation».
Further, as a direct consequence of MLT, classes of a different order cannot be
related by specialization (so, a specialization of ShipType that also specializes



Take Away Messages

• Types are absolutely fundamental in modeling but 
we need a proper theory of (higher-order) types 
that is both formal and ontologically sound

• Once we have that we can produce engineering 
tools for multi-level modeling including modeling 
languages, patterns, anti-patterns, methodological 
principles, computational tools, etc.
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